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Abstract 

Additive manufacturing (AM) of metallic parts has gained significant attention in recent years due to its 

ability to produce components without traditional tooling such as molds, melting furnaces, or extensive raw 

material preparation. Its unique capability to fabricate complex geometries has revolutionized part design 

and enabled substantial weight reduction. This review first outlines the development trajectory of metal-

based AM, with a particular focus on laser-based fusion methods, including Laser Powder Bed Fusion 

(LPBF) and Direct Laser Deposition (DLD). Understanding this evolution helps researchers identify both 

the capabilities and limitations of AM technologies, thereby enhancing their application in areas such as 

prototyping, mass production, and repair. Each metal possesses unique physical and chemical properties, 

which often make traditional manufacturing methods more challenging—especially for alloys with high 

strength, hardness, or temperature resistance. In this context, the review then focuses on nickel-based 

superalloys (NBSAs), which are widely used in high-temperature and high-stress environments but are 

particularly difficult to process using conventional techniques. Their application serves as a representative 

case study for evaluating the performance and feasibility of AM techniques for advanced materials. 

Furthermore, the future prospects of AM are discussed, including advancements in monitoring systems, 

integration of machine learning, and the development of AM-specific alloys. As a novel aspect, this work 

compares LPBF and DLD in terms of their advantages, limitations, and resulting material properties, along 

with a comparison to traditional manufacturing methods such as casting and wrought processing. 

 

Keywords: Additive manufacturing, Nickel-based superalloys, Laser Powder Bed Fusion, Direct 

Laser Deposition, advanced materials 
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I. Introduction 

Additive manufacturing is one of the advanced production methods, considered one of the 

precursors of the fourth industrial revolution. This type of production has already replaced many 

traditional methods [1, 2]. All kinds of polymer, metal, and ceramic parts can be produced using 

AM. In the industry, several production methods could be used simultaneously to produce a piece. 

For instance, to produce a metal part by precision casting method, a polymer model of the part 

must be carved first. Then, molding is carried out using ceramic materials, and after producing 

molten steel, the casting process is completed, and finally, machining is performed. However, in 

the AM, only a computerized design file of the part and an additive manufacturing machine are 

needed. After receiving the file, the machine considers the design as a large number of layers 

stacked on top of each other and then starts to make the part [3-13]. 

Metals are widely used engineering materials that play a key role in industries. Traditional 

methods of producing metal parts, such as casting, shaping, and assembly, require equipment, 

tools, and high costs; however, additive manufacturing greatly simplifies the manufacturing 

process and, in many cases, provides higher-quality parts. On the other hand, by eliminating the 

complexities of production, the design of parts can be optimized. Therefore, in cases such as 

aviation applications where the weight of parts is important, lighter parts can be produced with 

higher efficiency [14]. 

The function of additive manufacturing machines is that parts are produced by joining raw 

materials together. In order to join metallic materials together, with the radiation of an energy 

source, the particles are partially or completely melted and added to the previous ones. After 

passing the energy beam, the melted part immediately solidifies. The energy beam is mainly 

created by the source of a laser beam or electron beam. Due to the easier accessibility and use of 
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lasers, this energy source has become more widespread in additive manufacturing machines. The 

laser beam provides a clean and reliable energy source for the fabrication of metallic parts. The 

additive manufacturing performed using a laser energy source is named laser-based additive 

manufacturing (LBAM) [15-19]. LBAM offers a key advantage over electron beam methods: it 

can operate in an inert gas atmosphere, making it more practical and widely applicable in industrial 

environments. In contrast, other sources such as arc-based systems lack sufficient controllability 

during processing and generate a large heat-affected zone (HAZ), which can introduce defects [20, 

21]. The laser source, with its small spot size, enables precise and controlled energy input, making 

it suitable for both manufacturing and repair processes. 

Traditionally, repair of worn components was performed using welding techniques such as 

Tungsten Inert Gas (TIG) welding. However, these methods often create large melt pools that 

compromise substrate properties and induce defects like pores and cracks [22]. The evolution of 

AM technologies, particularly LBAM, has introduced a more reliable and controllable alternative 

for defect-free fabrication and repair of parts [23]. 

For instance, turbine components must meet strict quality standards to operate in extreme 

environments, and in recent years, many of these parts have been successfully produced using 

LBAM. This method requires only a CAD model to fabricate complex geometries, eliminating the 

need for traditional manufacturing tools such as expensive casting molds or forging dies. 

Moreover, part designs have been customized and optimized for weight reduction in aerospace 

applications. 

Another key benefit of LBAM is its ability to integrate component production, replacing traditional 

assemblies made of multiple joined parts with a single, consolidated structure. Today, LBAM is 

used across various industries, including automotive, defense, aerospace, and energy. In the harsh 
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environment of turbine operation, critical components of the combustion chamber—such as 

swirlers [24], inserts, and sleeves—are now manufactured using LBAM. The success of this 

technology has extended to the production of blades, vanes [25], and dampers in gas turbines. 

Overall, LBAM offers substantial industrial advantages by reducing raw material consumption, 

minimizing the number of parts and machining steps, and enhancing design flexibility. Notable 

applications include burner tips, fuel nozzles, and components in rocket engines and small aircraft 

engines [26-29]. 

The LBAM of metallic parts has attracted much attention from industrialists recently. This 

approach to LBAM is due to the advantages of this method over traditional methods. Some of the 

advantages and features of this method are as follows. 

• Due to the high temperature of the melt pool, it is possible to make parts from difficult-

to-machine and refractory materials. 

• The layer-by-layer manufacturing process allows any complex geometric design to be 

produced without limitations. 

• It is possible to produce parts by changing the raw material, and the microstructure of 

metals can be tailored. For instance, it is possible to produce nickel-based parts with a 

crystallized microstructure in a specific direction, <001>. 

• The properties of the produced parts are uniform throughout the whole part, and common 

defects, such as coring and segregation, are not observed in them. 

• High energy density and small HAZ, which leads to a decrease in grain size, and therefore, 

an increase in the part's mechanical properties. 

• Unlike casting and wrought methods, additive manufacturing does not require different 

equipment and molds for each new sample and has the highest speed and lowest cost for 
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custom production. Therefore, additive manufacturing is currently the best option in 

industries, such as aviation and biomaterials, where the variety of shapes of parts is high 

and the number of production is small [30-35]. 

In other reviews, the details of AM methods for various alloys, such as NBSAs, have been 

thoroughly covered [36-38]. However, understanding the development process of AM methods 

and how they have evolved to their current state can provide deeper insights into the advantages, 

disadvantages, capabilities, and limitations of each method. This review was conducted with this 

perspective in mind, aiming to help readers make informed decisions when selecting the 

appropriate AM method based on the desired final quality. For instance, using powder bed methods 

instead of flow-based ones might result in higher-quality parts. Conversely, understanding the 

limitations of the powder bed method could encourage leveraging the capabilities of flow-based 

methods to produce integrated parts with higher production rates. 

 

II. Types of Processes 

The LBAM of metallic parts can be categorized into three main types: powder-bed fusion (PBF), 

flow-based or directed energy deposition, and sheet lamination. Figure 1 illustrates a specific 

classification of LBAM systems used for metals.  

The LBAM techniques employ various materials, such as powder, wire, and sheet. While powder-

bed-based systems exclusively use powder, flow-based systems can utilize either powder or wire 

[15, 35]. Sheet lamination techniques solely rely on the use of sheets [35]. This review explains 

the two most common methods, powder-bed and flow-based. The sheet lamination has no usage 

in the industry; therefore, this method was not addressed in this review. 
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Fig. 1. Classification of LBAM techniques for metallic materials [35] 

1. Laser Powder Bed Fusion (LPBF) 

The LPBF is a subgroup of LBAM that utilizes a high-energy laser source to selectively melt or 

sinter a metallic powder bed [39, 40]. The LPBF methods can be further divided into three 

categories, briefly described in Sections 1.1 to 1.3. 

1.1. Selective Laser Melting (SLM) 

The SLM technique demonstrates the capacity to produce components with considerable material 

density, precise dimensional integrity, and desired mechanical properties. Within the SLM process, 

successive layers of metallic powder undergo fusion and consolidation, culminating in the 

development of intricate three-dimensional structures [28]. The SLM enables the fabrication of 

complicated components with nearly 100% density, thereby ensuring uniform characteristics 

across a series, obviating the need for subsequent post-processing stages [1, 11, 35]. 
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The SLM technique provides the most typical features of powder-based additive manufacturing 

because of its flexibility in feedstock and shapes. Both inert argon and nitrogen gas can be utilized 

in the SLM process. The schematically working system of the SLM machine is demonstrated in 

Figure 2. Nowadays, SLM  terminology is mainly known as its group head, LPBF; therefore, in the 

case of this review, it will be regarded. Refer to ASTM 52900-2022 for more details about additive 

manufacturing terminologies. 

Despite the numerous advantages of LPBF, it still exhibits certain limitations in its processing 

compared to traditional manufacturing techniques. Due to the localized concentration of energy 

input, a temperature gradient mechanism is induced, resulting in plastification and subsequent 

generation of residual stress, ultimately leading to deformation. These residual stresses play a 

pivotal role in affecting dimensional accuracy and propagation of cracks, potentially causing 

detachment of parts from the base plate [41]. 

 

 

Fig. 2. Schematic representation of an SLM machine [1]  
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It would be suggested that the material be preheated to minimize the residual stress. The normal 

thickness of the layers in the LPBF process is between 20 to 100 µm. In the process, one of the 

Nd: YAG or CO2 lasers is used as the heat source. A wide range of metallic materials can be 

processed by the LPBF. Some of these materials are as follows: stainless steel, aluminum, copper, 

iron, cobalt-chrome, titanium, NBSA, and a mixture of mentioned ones [35, 42]. 

1.2. Selective Laser Sintering (SLS) 

In the SLS process, a mix of two different powders is used. One powder is structural, and the other 

is sacrificial as a binder. The SLS machine works similarly to the LPBF, and the powder is 

different. The structural powder is a metallic material, and the sacrificial powder is a polymer. 

While the laser beam irradiates the powder mixture, only the polymer melts, and the structural 

powder remains unchanged. The fused polymer binds the structural material together and makes 

an integrated part. Heat treatment should be applied to remove the binder and sinter the structural 

powder. Thereby, the sintered part, known as the green part, is held in order of 900°C temperature. 

The green part has approximately 50% porosity [35]; as a result, the sintered component undergoes 

a transformation process through infiltration with a low melting point metal or alloy, such as 

copper, brass, and bronze, thereby yielding a dense composite alloy component [43]. It is 

noteworthy that the accuracy of the SLS process is challenging to predict as it is a function of 

various parameters, some of which can be mutually dependent. The parameters that have the most 

influence on SLS/Rapid Prototyping accuracy can be divided into three groups: pre-processing, 

processing, and post-processing errors [44]. Mostly, the layer thickness is between 100 to 300 µm, 

and SLS resolution is also in the order of 100 µm. One of the advantages of SLS is the lower 

consumption of energy. Therefore, the embedded laser can be each fiber, CO2, or disc laser without 

any specific limitation. Furthermore, the other advantage is the processing possibility of a wide 
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range of materials, such as sand, stainless steel, and different plastics [35]. Metal powders find 

their exceptional applicability in the realm of SLS, as it is challenging to directly fabricate metallic 

components using alternative rapid prototyping, rapid tooling, or rapid manufacturing 

(RP/RT/RM) methods [45]. 

The SLS can be further enhanced through a variation known as SLS/Hot Isostatic Pressing 

(SLS/HIP), which introduces several advantageous features into the manufacturing process. The 

SLS/HIP represents a net-shape manufacturing approach that merges the inherent freeform shaping 

capabilities of SLS with the complete densification potential of HIP [43]. These two features are 

next to each other, leading to a reduction in manufacturing costs. In the mere SLS, the part has a 

densification of approximately 80%. After HIP treatment, a fully dense specimen can be produced. 

The HIP process uses an inert gas like argon, and the put sample experiences a high temperature 

at a high level of isostatic pressure. The details of the method, such as layer thickness and the 

resolution, are the same as mentioned about SLS [35]. According to Liu et al. [43], cold isostatic 

pressing exerts a nearly equivalent influence on the final properties of the component. This method 

is particularly suited for processing durable, high-strength materials like IN625 and Ti6Al4V [35]. 

1.3. Direct Metal Laser Sintering (DMLS)/Direct SLS 

The technique known as DMLS or Direct SLS involves the utilization of two distinct types of 

metal powders. One of these powders possesses a high melting point, serving as the structural 

metal, while the other features a lower melting point, fulfilling the role of a binder [33]. It is 

noteworthy that the DMLS process can alternatively employ a single powder with varying grain 

sizes, where the powder with a smaller size is fused, and coarse/structural powder will sit in it [35]. 

 [
 D

O
I:

 1
0.

22
06

8/
ijm

se
.3

83
7 

] 
 [

 D
ow

nl
oa

de
d 

fr
om

 c
sc

.iu
st

.a
c.

ir
 o

n 
20

25
-0

6-
13

 ]
 

                            12 / 70

http://dx.doi.org/10.22068/ijmse.3837
https://csc.iust.ac.ir/ijmse/article-1-3837-en.html


 

13 
 

In its fundamental concept, the DMLS process closely resembles SLS. However, DMLS employs 

uncoated pre-alloyed metal powders as raw material, whereas SLS relies on polymers or coated 

metal powders [4]. 

Both the SLS and DMLS are suitable for tooling; DMLS does not need the time-consuming step 

of removing excessive binder material. This advantage makes the production process faster and 

more economical. Therefore, the DMLS method can be applied to produce prototype models, 

molds, and dies [44, 46]. 

1.4. Comparison Between LPBF and SLS 

In the LPBF process, the powder completely melts during the laser beam irradiation. This full 

melting manufactures a final part with high density, and its quality is comparable to that of the 

conventional method. The SLS parts have a high porosity volume; thereby, their final quality is 

decreased [35, 44, 47].  

Melt infiltration and removal of the binder are two time-consuming steps. The LPBF parts do not 

need any specific post-processing. Therefore, if the surface roughness is ignored, the final part 

after the cutting from the substrate can be used in industrial applications [35, 44, 47]. 

Therefore, in the past few years, LBAM of metallic materials has been considered limited to LPBF 

and  directed energy deposition (DED) processes and no longer pointed to SLS [2, 48, 49]. 

Moreover, in the continuation of this review, only LPBF properties are reported, and SLS reports 

are ignored as much as possible. 

2. Flow-based or Directed Energy Deposition (DED) 

The flow-based deposition is firmed on the injection of the powder or a wire as the feeder of the 

process to create a metallic part. The injected wire or powder melts by a heat source. Moreover, a 
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laser or an electron beam can be used as the heat source. The process is called "directed energy 

deposition (DED)" or "direct metal deposition." If the heat source is a laser, the process is also 

known as "directed laser deposition" [2, 39, 50]. Due to the numerous brands that produced the 

DED machine, the process has taken many names. Some of the most prevalent ones are laser-

engineered net shaping (LENS) [50], direct light fabrication (DLF) [51], laser consolidation (LC) 

[52], laser rapid forming (LRF) [53], and laser cladding (often for coatings) [35]. 

 

2.1. Direct Laser Deposition (DLD) Equipment and Process 

The DLD mechanism consists of the blown powder or injected wire that is introduced to a substrate 

and melts by a focused laser while reaching (Figure 3). The laser type is a high-power one and can 

be gas-CO2 or fiber-Nd: YAG. In some handy-made DLDs, a CNC with a powered laser and a 

powder blower pump can form the machine [51-53]. 

Blowing of the powder or injecting the wire is carried out by a nozzle. In order to prevent the 

oxidation of the created melt atop the substrate, an inert gas is blown into the melt pool. Moreover, 

in the powder DLD process, the volume of blown powder is often several times more than what 

melts, i.e., a large volume of the powder blown from the nozzle remains unscraped and unused 

and just plays the role of the oxidation barrier. Furthermore, the inert gas for the powder-base DLD 

and the oxidation barrier play the role of the powder carrier [53, 54]. 
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Fig. 3. Schematic drawing of the DLD process, a. powder-feed laser deposition, and b. Wire-feed laser 

deposition [51, 52] 

 

3. Influence of Process Parameters and Scan Strategy on Microstructure and Properties  

Process parameters significantly influence the microstructure and mechanical properties of the 

part. These parameters can be broadly categorized into two main groups: those affecting (1) energy 

density and (2) layer thickness [5, 55-58]. Any critical factor impacting part quality may be 

considered a process parameter, including laser source characteristics, part design, machine 

components (e.g., nozzle configuration), and raw material properties. 

In the DLD method, the most critical process parameters are generally grouped into four main 

categories: laser power, laser scanning velocity, powder mass flow rate [59, 60], and hatch spacing 

[35, 61]. With the exception of powder mass flow rate, these parameters are also relevant in the 

LPBF process. However, in LPBF, the layer thickness is a key parameter that replaces the powder 

mass flow rate used in DLD. It is important to note that LBAM processes may include additional 

process parameters—for instance, laser beam focus diameter and laser standoff distance, both of 

which can influence build quality in DLD and LPBF methods [62]. 
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Moreover, scan strategy or pattern is another influential factor that affects the properties of the 

final part (Figure 4). Various scan strategies—such as unidirectional, bidirectional, continuous, 

and raster/island—result in distinct material properties [63]. In certain cases, interlayer rotation is 

essential for achieving a dense, pore-free structure. For example, in one study (Table 1), a 30° 

interlayer rotation increased the density of Inconel 718 parts from 8.11 to 8.20 g/cm³ [62]. Parts 

produced with interlayer rotation typically exhibit a basket-weave structure, as illustrated in Figure 

9 [35]. Further discussion on scan strategies is provided in Section III.4. 

Also, powder characteristics are closely linked to process parameter optimization. Selecting 

suitable parameters requires consideration of material properties. Attributes such as powder shape, 

size, and distribution directly influence process behavior, including flowability (especially in 

DLD), laser absorption, and surface morphology [47, 64, 65]. 
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Fig. 4. Effect of scanning pattern on melt pool and microstructure: unidirectional (a) and island (b) scan 

patterns [66]; melt pool indications influenced by scanning orientation, interlayer rotation of 67 degrees (c 

to h) [67] 
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Table 1. Effect of interlayer rotation on increasing the density of the part/sample [62]  

Interlayer rotation degree Porosity (%) Density (g/cm3) 

0 0.21 8.11 

30 0.10 8.20 

 

 

4. Comparison Between LPBF and DED 

Each LPBF and DLD is used when considering the final required properties. The production speed 

of DLD is often higher than that of LPBF, and the surface quality of LPBF is better than that of 

DLD. Altogether, DLD may be offered for large parts in which the surface quality is not a 

limitation, and the production speed is important. 

4.1. Advantages of DED / DLD Over LPBF 

One of the most important advantages of DLD is its high productivity speed. The deposition rate 

is approximately 100 gr/h. The layer thickness reaches 250 µm, but the value for LPBF is 

conventionally less than 40 µm [35]. 

The other advantage is its freedom in the part size, which means that the DLD, as opposed to 

LPBF, is not constrained to the build chamber and powder container [35]. The other unique feature 

of DLD is the capability to produce functionally graded materials and a single material. Moreover, 

DLD can be used in repairing parts, often known as laser cladding repair [49, 54, 68-70]. 
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4.2. Disadvantages of DLD Compared to Powder-Bed 

The main disadvantage of the DLD process is the degraded surface quality. In DLD, the roughness 

is high and at least ten times higher than that of LPBF. Therefore, the final part must frequently be 

machined and surface treated [2, 35, 48]. 

Some defect formations are prevalent in DLD, which are as the following: 

• Cracking and distortion initiated from a high cooling rate 

• The porosity derived from the powder contamination and the gas entrapment 

• Lack of fusion (LOF) and weak bonding between the layers 

• Hatch line defects owing to improper process planning 

4.3. Powder-Bed Advantages Over Flow-Based Methods 

In powder bed processes like LPBF, the powder bed prevents the melt from falling. Accordingly, 

for parts having overhangs, LPBF is better than DLD. The other advantage of LPBF is its low 

residual stress. Altogether, thermal tension in the additive manufacturing processes is high because 

of fast repeated melting and cooling cycles. Nevertheless, this residual stress in LPBF is less than 

DLD because the powder bed inhibits the fast cooling of the melt section and exit of the heat [2]. 

Better surface quality and higher dimensional accuracy are the other basic advantages of LPBF 

over DLD. The purpose of applying additive manufacturing is to produce delicate parts with 

complex geometries. Therefore, owing to LPBF's superiority, it will be advised when high 

accuracy is required [71, 72]. 

4.4. Limitations of LPBF/Powder Bed Compared to DLD 

Powder bed methods are constrained to the build chamber. However, in DLD, the process can be 

designed so that the part size can vary freely. The deposition rate of LPBF is lower than that of 
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DLD; nevertheless, it is noteworthy that in new LPBF machines, the total deposition rate has 

increased with the increase in the number of lasers. For instance, there are simultaneously 12 active 

lasers in some new LPBF machines [35, 47, 48, 73]. The LPBF process is more sensitive to the 

size of the powder. If the powder particles are large, the accuracy is challenged. If the powder is 

fine, the tendency to agglomeration increases and the flowability faces difficulty [47]. 

 

5. Monitoring 

In past years, monitoring has been seriously discussed to find the onset of the defects in the serial 

production of the parts. In additive manufacturing processes, the stability and repeatability of the 

procedure are challenges. Some devices and software were designed to detect anomalies during 

the process quickly. The conventional tools to help the monitoring and detection of the distorted 

part are as follows [35, 64, 72, 74-79]. 

• Infrared (IR) imaging 

• Ultraviolet (UV) imaging 

• X-ray imaging 

• Charge-coupled device (CCD) video imaging 

• Photodiode 

• Pyrometer 

• Ultrasonic wave generator 

• Complementary metal oxide semiconductor (CMOS) camera 

5.1. Powder Bed Fusion Process Monitoring 

In the PBF, the melt pool, the layer of the powder bed, the manufactured slice, and the under-

scanning tracks can be evaluated. Another important issue in powder bed monitoring is the 
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spattering of the powder or melt. Since 2011, galvanic scanners have helped monitor the powder 

bed. The detection is based on measuring two angles and the wavelength differences resulting from 

the instant temperature. The detection normally faces displacement problems, which can be solved 

using two-dimensional sensors [75, 79-85]. Currently, most new monitoring systems are based on 

non-contact systems consisting of optical, thermal, and acoustic detectors. The mentioned devices 

and the rained computers powerfully detect the anomalies [64, 77]. 

5.2. Monitoring of Flow-Based Processes 

The DLD process monitoring can be carried out in every step of powder delivery, melt pool, and 

layering.  

• Monitoring of Powder Delivery Rate 

A photodiode is set to measure the volume of the powder exiting from the nozzle. The more powder 

particles pass through the nozzle, the less light reaches the photoelectric sensor. Furthermore, the 

optical and acoustic sensors are promising measurement devices in the delivery rate step [30, 35, 

78, 86, 87]. 

• Monitoring of Melt Pool and Layer Morphology 

Melt pool monitoring is often based on thermal manners. A pyrometer and an IR sensor coupled 

with a CMOS or CCD camera can evaluate the melt pool morphology. Proper monitoring of the 

melt pool can evaluate and improve the geometrical integrity, as well as the microstructural and 

mechanical properties of the under-manufacturing part. Since the melt pool shrinks, lengthens, and 

splashes, its morphology during the laser scan is completely unstable. This instability makes it 

difficult to evaluate and monitor the process. In order to monitor the unsteady melt pool, 

thermophysical equations like Rothensal's analytical solution are mainly applied. Overall, melt 
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pool characteristics, such as peak temperature, length along a certain axis, and total area, are some 

of the process signatures [2, 35, 88, 89] . 

X-ray tomography is proposed as a new and reliable method to monitor layer morphology. The X-

ray setup characterizes, quantifies, and identifies the layer morphologies and anomalies [90] . 

 

6. Machine Learning 

Computers can help to detect anomalies in each step of the manufacturing process. This type of 

computer assistance is known as machine learning (ML). In some cases, ML is coupled with 

monitoring tools to detect and obviate process defects. There are many toolsets accessible for 

employment in the realm of image processing within the domain of ML, encompassing both freely 

available and commercially licensed alternatives. Noteworthy examples include the MATLAB 

Computer Vision Toolbox and the C++/Python OpenCV libraries. Overall, ML can improve all 

steps of the manufacturing process, from parameter settings to quality control. Numerous sciences 

like metallurgy, electronics, physics, and mechanics are engaged in additive manufacturing 

technology. Moreover, in each field of the process, many parameters and variables may change 

[91-95]. 

In order to optimize an additive manufacturing process, the computer takes the variation range of 

the parameters and assumes a step for each parameter/item, then compares the results and suggests 

the best one. For example, in one additive manufacturing process, the parameters and steps are 

according to Table 2.  
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Therefore, there are many degrees of freedom in normal additive manufacturing work. The 

computer considers all these degrees and offers the optimized one in supervised or unsupervised 

situations [96-100]

 

Table 2. Case study illustrating a method to optimize the process using design of experiments 

Parameter/Item Range/states Step size 

Number of states =  

(range size /step size) + 1 

Power 100-300 w 20 w 11 

Scan speed 500-1500 mm/s 100 mm/s 11 

Hatch Distance 30-80 µm 10 µm 6 

Layer Thickness 20-60 µm 10 µm 5 

Next Layer Rotation 0-90 degrees 15 degrees 7 

Amount of Recycled 

Powder 

0-100 percent 20 percent 5 

Build direction 0-90 degrees 15 degrees 7 

Powder Size 15-53 µm/ 60-80 µm - 2 

Scan strategy 

Island/Regular Back-

and-Forth 

- 2 
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III. Mechanical properties 

The mechanical properties of NBSAs have been investigated for several decades. Conventionally, 

the superalloy specimens were produced by wrought or casting. However, after the emergence of 

AM, it turned into a desired method. The additive manufacturing can produce refractory materials 

with high-temperature applications and manufacture parts in complex shapes.  

Gas-turbine blades have both specifics, complicated designs, and high-temperature materials. The 

blades sometimes have air paths that make their design more complicated and harder to produce. 

Therefore, additive manufacturing seems to be a suitable method of manufacturing these parts, 

which has been investigated seriously in past years [101-105]. 

1. Various Items Influencing the Final AM-Developed Part's Quality 

An extensive range of different parameters influences the properties of NBSAs. On the other hand, 

a wide variety of elements are used in the composition; this difference in the alloying makes the 

final properties more complicated. Therefore, AM-developed nickel-based parts need to optimize 

the process parameters, based on the added alloying elements. In the past years, much research has 

been dedicated to the metal additive manufacturing field, but it is not sufficient yet due to the 

variety of parameters, specifically for nickel. 

a. Process parameters of additive manufacturing significantly affect the specimen properties. 

The important parameters are scan velocity, laser power, hatch distance, and layer 

thicknesses  [39, 106-108]. 

b. The grain structure in NBSAs has an important impact on the part application. For high-

temperature usage, mostly single crystal and columnar grains are used. In AM-developed 

parts, the structure prefers to form columnar dendrites. When the process parameters are 
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fixed, an equiaxed, columnar, or single-crystal structure can be determined. Some process 

conditions, such as build direction, preheat temperature of powder or substrate, and scan 

strategy, can help better tailor the desired dendrite structure [36, 37, 109-114]. 

2. Different Types of Powders in the Additive Manufacturing Processes 

Since additive manufacturing is somewhat comparable to the welding process, most research is 

performed around alloys with acceptable weldability, such as IN718, Waspaloy, and Nimonic263 

[115]. However, it is necessary to mention that the number of usable prevalent powders is not 

numerous and does not have a wide variety. Therefore, published papers regarding the additive 

manufacturing field of the NBSAs are mostly limited to a few specific and conventional grades 

[35].  

Mainly three types of powders are used in the additive manufacturing processes of NBSAs: 

• Powders with good weldability, like IN625, which avoid cracking because of solid 

solution strengthening and low content of precipitates [35, 116-120]. 

• Non-weldable powders that are susceptible to strain-age cracking because of 

gamma-prime (γ') precipitates. 

In these alloys, the sum of the aluminum and titanium element content is typically more 

than 6.4%. The IN738 and CMSX-4 are among the examples of these alloys [53, 109, 121]. 

• Alloys with medium weldability are also part of NBSAs. In these cases, although 

the gamma-double prime secondary phase (γ'') precipitates in the matrix, this phase 

opposite of γ' does not face the specimen to considerably high strain age cracking. This 

precipitate-strengthening mechanism is used in the IN718 alloys. This balance between 

strength property and desired weldability has resulted in the general usage of IN718 in the 

additive manufacturing processes [1, 51, 122-131]. 
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It is noteworthy that IN718 has proper weldability as well as structural and mechanical stability 

up to 650°C; therefore, this alloy is one of the most applicable additive manufacturing superalloys 

used in elevated-temperature applications, such as gas turbines and aviation engines. The IN718 

is a superalloy made of nickel, iron, and chromium as the major elements in which the main 

strengthening precipitate is a semi-stable phase, γ'', with a tetragonal body-centered cubic crystal 

structure [115]. The microstructural properties of the manufactured specimen and precipitates play 

a key role in the strengthening properties. Therefore, the characterization of the type, size, and 

dispersion of the precipitates has significant importance. The precipitate-strengthening properties 

in the IN718 are determined by the heat treatment cycle. Therefore, to reach the maximum 

mechanical properties, the heat treatment issues are bolded [115]. In this regard, different types of 

precipitates of the IN718 are listed in Table 3 [132]. 

 

Table 3. Existent phases in NBSAs [132] 

Primary Composition Crystal system Phase  

Ni, Cr, Fe-Based Cubic γ Solid Solution Matrix 

Ni3(Ti, Al, Nb) Cubic γ' 

Intermetallic Ni3 (Nb, Ti) Tetragonal γ'' 

Ni3(Nb, Ti) Orthorhombic δ 

Ni3(Ti, Al) Hexagonal η Topological 

(Intermetallic) (Ni, Cr, Fe)2(Nb,Ti) Hexagonal Laves 

(Nb, Ti)(C, N) Cubic MC 

Carbide 

(Cr, Fe)23C6 Cubic M23C6 
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3. Comparison Between Additive Manufacturing and Conventional Methods in 

Manufacturing Steps and Resulting Microstructure  

In previous sections, it was mentioned that one of the strengthening mechanisms of NBSAs is 

issued with secondary phase precipitates (γ' and γ''). In order to form and optimize this 

strengthening, the as-manufactured specimens must be heat-treated. Notably, because of their 

inherent variation from conventional methods, the AM-developed parts include secondary phases 

with smaller sizes. These differences between precipitate sizes are derived from a small melt pool, 

little time for secondary phases to join each other, and thereby less coring in the additive 

manufacturing processes [35, 51, 53, 62, 63, 106, 121, 123]. 

Regarding the past sections, it is clarified that all of the manufacturing steps in nickel-based 

additive manufacturing processes can influence the printed part properties. These steps include the 

following: 

• Pre-manufacturing step and use of powder and chamber preheat [121] 

• Manufacturing step and the process parameters [57, 109, 133] 

• Scan strategy/pattern [62, 63] 

• The post-process level and usage of heat treating [134] 

Currently, accurate and obvious evaluation of the NBSAs properties in layer 

manufacturing/additive manufacturing is complex. Microstructural variations are derived from the 

process method, process parameters, and part geometry. All mentioned items simultaneously play 

a role in the mechanical properties, but the impact of each one and its share are not fully clear. 

After AM/forming/casting, NBSAs is mostly put under standard heat treatment. Nowadays, almost 

all studies regarding post-manufacturing heat treatment are based on the same information 
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received from the casting part. Therefore, due to the intrinsic disparities between the additive 

manufacturing structure and its counterparts, previously established standards may prove 

suboptimal in this context [25]. [35]. 

Furthermore, the mechanical properties, including the structure, display a non-equality/non-

uniformity in the properties owing to different build directions. Currently, there are no standard 

samples for the mechanical tests of AM-developed parts. The standard sample should consider 

important properties of the layer manufacturing, such as surface roughness, post-processing, and 

build direction. Considering the impact of the build direction on the microstructure, in some 

reports, tests are carried out by sampling in both vertical and horizontal directions [35, 135]. 

3.1. Comparison Between Properties of Additive Manufacturing and Conventional 

Methods 

In initial comparisons between additive manufacturing (DLD/LPBF) and conventional methods 

(wrought/casting), it was reported that heat-treated AM parts possess at least 80 % of the tensile 

strength of their wrought counterparts. Although LPBF outperforms DLD in as-deposited 

condition, DLD exhibits the lowest room-temperature tensile strength without heat treatment. 

In most case studies, AM-produced samples demonstrate significantly greater elongation, 

exhibiting at least 25 % more elongation than wrought specimens [35, 106, 136]. The final part 

properties have been further enhanced by process-parameter optimization and machine upgrades—

such as powder preheating. Recent studies have shown that, with appropriate heat treatment, creep 

properties of AM parts can exceed those of both wrought and cast components (Figure 5) [137]. 

Regardless of the influence of process parameters on pore formation, each AM process has 

inherent capability to achieve full density. Among conventional AM techniques, LPBF currently 
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delivers the highest part densities (Table 4). This superior densification is a key advantage of 

laser-based systems over electron-beam systems and underpins their enhanced mechanical 

performance [138]. Consequently, LBAM parts are regarded as more reliable for industrial 

applications, especially under extreme conditions such as those in gas turbine components. 

 

 

Table 4. Densification capability of AM methods  

Reference Process 

Relative 

Density (%) 

Alloy/Element 

 [139] 

LPBF 99.77±0.08 AlSi10Mg 

LPBF 

95.28 to 

96.13 

Mg 

LPBF 99.6 Ta 

LPBF < 99 Ti-6Al-4V 

 [26] 

LPBF 99.9 ABD-900 AM 

EBPBF 98.4 ABD-900 AM 

EBPBF + 

HIP 

99.92 ABD-900 AM 

 [140] LPBF 

99.87 to 

99.96 

IN738LC 
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3.2. Impact of Build Direction on the Mechanical Properties and its Comparison with the 

Casting Characteristics 

The build direction directly influences the microstructure and properties of the part. In Figure 6, 

the two z and xy build directions are indicated [115, 141]. In the z-build direction, the specimen 

morphology is formed columnar parallel to the part axis. Nevertheless, in horizontal manufacturing 

of parts, the morphology similar to casting parts is manufactured in equiaxed form (xy-specimen 

in Figure 6).  
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Fig. 5. Creep rate between 900 to 1100 MPa until 1% plastic deformation [137] 

 

Fig. 6. (a) two various build directions in the LPBF build chamber [115], (b) schematic of the build direction 

concept [141] 
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Among the properties of NBSAs, creep is significant owing to the high-temperature applications 

of these alloys. Rickenbacher [141] et al. demonstrated that IN738 HIP samples manufactured in 

the vertical direction (z) have more creep strength compared to those manufactured in horizontal 

directions (xy). The creep strength of z specimens equals the minimum of the casting ones. 

Although the creep properties of the z specimen are better than xy, the other mechanical properties 

are less than xy. The comparison of tensile strength of the z specimen versus xy is according to 

Tables 5 and 6. This greater strength can be related to the impact of the hall-petch relation and 

grain boundary resistance against the dislocation movements in temperatures less than 0.5 Tm. 
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Table 5. Tensile properties of the cast and LPBF samples at room temperature (IN738) at 23°C 

[141] 

Elongation 

(%) 

σUTS (MPa) σ(0.2) (MPa) 

Young's 

modulus 

(GPa) 

sample 

7.5 945 765 200 

Casting 

reference  

8.4±4.6 1184±112 933±8 233±9 SLM-xy 

11.2±1.9 1162±35 786±4 158±3 SLM-z 

 

 

Table 6. Tensile properties of the cast and LPBF samples at 850°C (IN738) [141]  

Elongation 

(%) 

σUTS (MPa) σ(0.2) (MPa) 

Young's 

modulus 

(GPa) 

sample 

10.0 710 530 144 

Casting 

reference  

8.0±1.2 716±1 610±1 157±4 SLM-xy 

14.2±3.9 688±7 503±2 110±2 SLM-z 
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4. Scan Strategy Effect on the Mechanical Properties 

The additive manufacturing scan strategy is an important item that highly impacts structural and 

mechanical properties. Many different scan patterns can be applied in part manufacturing. Scan 

patterns can include conventional linear and/or island patterns. In general, various forms of laser 

passes can be used on the specimen (Figure 7). Each of these forms induces a distinct 

transformation within the ultimate microstructure of the specimen. This variance in the resulting 

microstructure can be attributed to the fluctuation in the energy input applied to the powder and 

the final manufactured part. Overall, there are five common scan patterns, which can be seen in 

Figure 8 [35]. 
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Fig. 7. Scan strategies influencing energy density and heat input, subsequently affecting microstructure 

and residual stress [35] 
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Fig. 8. Five conventional scan patterns [35] 

 

According to scientific developments in the field of scan patterns, laser pass rotation in each layer 

is effective in improving the properties. After the deposition of each layer, the scan pattern is 

applied at a different angle to manufacture the next layer. Therefore, porosities in the part are 

reduced, and the sample density is near the theoretical density. The optimized angle in the literature 

is reported to be approximately 67°, between (30° and 90°). This strategy is also called the basket 

pattern [62, 63, 142, 143]; Figure 9 demonstrates the schematic image and the microstructure of a 

part with a basket pattern (more details are available in Section II.3). 
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Fig. 9. a) Microstructure of the part with the interlayer rotation, b) A sample schematic of the rotation 

strategy [63] 

 

4.1. Decrement of Residual Stress Using the Island Pattern 

One of the significant problems in the additive manufacturing of parts is the residual stress in the 

sample and the deformation of the part. In order to avoid this problem, the island scan strategy is 

employed. Using conventional patterns, the energy diffuses focally to the sample, resulting in 

residual stress and distortion. To decrease the remaining stress, the energy is diffused dispersedly 

to the under-manufacturing specimen (Figure 10). The island strategy is used to satisfy this need. 

The manner may include various states. The totality of the island pattern is that the under-process 

layer is considered a raster, similar to a chess board. Each cell grid of the board is selected 

randomly and scanned by the laser beam to be manufactured. The random application of the energy 

to each cell causes the avoidance of focused energy inserted into one area of the part. The dispersed 

application of the energy inhibits part distortion and residual stress [144-148]. 
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Fig. 10. Schematic of island scan strategy [148] 

4.2. Hatch Spacing Distance 

Hatch spacing is the distance between adjacent laser scan tracks. In general, hatch distances are 

chosen to ensure approximately 30% overlap between passes. For instance, if the melt pool 

diameter is 80 µm, a hatch spacing of around 60 µm may be used to achieve this overlap [62, 149]. 

As presented in Equation 1, increasing the hatch spacing directly reduces the input energy. 

Improper selection of hatch spacing can lead to bonding defects, LOF, altered cooling rates, 

residual stresses, interlayer porosity [150, 151], surface roughness [36], and cracking [109]. In 

fact, most defects related to energy density can be influenced by hatch spacing. As noted by 

Saghaian et al. [152], this parameter can affect the microstructure, texture, and thermomechanical 

properties of alloys produced by LBAM (Figure 11). A complex relationship between hatch 

spacing and dwell time should also be considered when treating this as a variable parameter [2, 

153]. 
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Fig. 11. Effect of hatch spacing on the microstructure in LPBF [152] 

 

5. Defects (Pores and Cracks)   

Parts produced via AM generally exhibit varying quality depending on the process parameters 

and/or feedstock used. The main defects observed in these parts are pores and cracks (Figure 12). 

 

5.1. Cracks   

The formation of cracks at the initial stage largely depends on the selection of raw materials. For 

this reason, weldable materials are predominantly used in AM processes. At later stages, process 

parameters significantly influence crack formation (Figure 13). The types of cracks reported in the 

literature for NBSAs are as follows: 
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• Solidification Cracking   

When the volume fraction of the solid phase ranges between 0.7 and 0.9, the remaining liquid 

struggles to flow through the dendritic structure. Shrinkage of dendrites can lead to the formation 

of pores, which subsequently result in solidification cracks. This issue is particularly severe in non-

weldable superalloys due to their pronounced segregation behavior. Also, solidification cracking 

is the most common type of cracking observed in solution-strengthened superalloys such as IN625 

and Hastelloy X. These alloys contain elements like Hf, Nb, Mo, and C, which facilitate the 

formation of carbides and Laves phases. These phases exhibit low eutectic temperatures, which 

extend the mushy zone and increase the material's susceptibility to cracking.   

• Liquation Cracking 

Liquation cracking occurs when rapid heating prevents secondary phases from dissolving into the 

matrix, causing them to transition directly into a liquid phase. This liquid phase is unable to 

withstand the stresses induced by thermal contraction. Liquation cracking typically originates from 

eutectic phases, such as γ/γ', and is most commonly observed in the heat-affected zone (HAZ). The 

presence of elements such as Si, Zr, and B can increase the susceptibility to liquation cracking in 

AM. 

 

• Strain-Age Cracking (SAC) and Ductility-Dip Cracking (DDC) 

These types of cracks occur in the solid state. Strain-age cracking (SAC) typically occurs in γ' 

strengthened superalloys with high Al and Ti content, which rely on precipitation strengthening. 

Ductility-dip cracking (DDC) has a more complex mechanism and is sometimes categorized as a 

form of liquation cracking or SAC. 
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To address the sensitivity of raw materials to crack defects, feedstock is typically selected from 

weldable NBSAs (Section III.2). However, in AM processes, due to rapid liquation and 

solidification, even weldable materials can become prone to cracking. Some researchers attribute 

cracks primarily to the energy input into the melt pool. A more comprehensive approach, however, 

involves examining the individual effects of each process parameter on defect formation. The 

range of process parameters influences the melt pool shape, liquation and solidification rates, and 

the heat-affected zone (HAZ). While these factors have been extensively studied, the results of 

current research are often inconsistent. For example, some studies report that increasing scan speed 

leads to higher crack density, while others present contradictory findings. Similar discrepancies 

are observed for laser power. One potential gap in the research is the limited consideration of 

element diffusion during AM processes. While only a few studies have investigated this aspect, 

some suggest that the presence of specific elements may significantly contribute to crack 

formation. Additionally, certain studies have noted the accumulation of elements, such as 

aluminum, around cracks, though these findings were incidental rather than the primary focus of 

investigation. Another cause of conflicting results across studies could be the limited parameter 

ranges considered and the lack of consistency in comparing results. For instance, the impact of 

increasing scan speed at low energy inputs may differ significantly from the same change at high 

energy levels. Table 7 presents the typical parameter ranges studied in the LPBF method, the most 

common AM technique for NBSAs.   

5.2. Pores   

It is common to observe pores in AM-produced parts after evaluation (Figure 13a). The origins of 

these pores can be categorized into two main types. The first type of pores results from LOF. LOF 

defects occur when the laser source fails to adequately melt the substrate or raw material. The 
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second type originates from entrapped gases within the sample. These gases can form under 

various conditions. For instance, improper production methods of AM powder may introduce 

gases into the raw material, which are subsequently transferred to the part during the AM process. 

Additionally, some gases are produced due to the evaporation of volatile elements in the melt 

pool. This type of pore can be minimized by optimizing the process parameters. High energy input 

to the melt pool, achieved by decreasing the scan speed or increasing laser power, alters the melt 

pool shape. Specifically, increasing the energy input transforms the melt pool shape from a 

teardrop to an elliptical form. This change increases the width-to-depth ratio of the melt pool, 

facilitating the escape of trapped pores.   

As mentioned before, some studies associate defect formation with the energy input to the melt 

pool, while others focus on the individual effects of process parameters. The values of process 

parameters can vary widely, as shown in Table 7. Most investigations have explored the influence 

of parameters in the high scan speed range. However, at low scan speeds, even small changes in 

speed can lead to significant variations in energy input, as indicated by Equation 1. This highlights 

a research gap in the low scan speed range that warrants further investigation. 

 

E = 
𝑃

𝑣×𝑡×ℎ
  (1) 

 

Where P is the laser power (W), v is the scan speed (mm/s), t is the layer thickness (mm), and h is 

the hatch spacing (mm).   
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Figure 12. Common defects in LBAM of NBSAs [36, 109, 139] 
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Figure 13. (a) Various pores, including spherical and irregular types, and cracks observed under different 

process parameters in LPBF of IN625; white numbers indicate scan speeds [154], (b) DDC in Ni-based 

weld metal along a migrated grain boundary (MGB); the dotted line represents the solidification grain 

boundary (SGB) [155], (c) SAC: intergranular strain-assisted cracking (SAC) in the simulated HAZ of 

Waspaloy  [155], (d) Solidification cracking; the white area indicated by arrows is a Nb-rich eutectic [156], 

(e) Liquation cracking in the HAZ of Ni-based superalloy welds  [157] 
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Table 7. Common range of LPBF process parameters 

Scan Speed 

Range 

Power 

Range 

Layer 

Thickness 

Weldability 

(Superalloy) 

Descriptions Reference 

725 to 875 

mm/s 

169 to 195 

w 

20 µm 625 Hatch= 90 to 110 µm  [158 ,159 ] 

320 to 1250 

mm/s 

156 to 195 

w 

20 to 40 

µm 

IN625 Hatch= 80 to 100 

µm 

 [160 ] 

1000 to 1300 

mm/s 

100 to 170 

w 

20 µm non-

weldable 

MAD542 and 

ME3 

Hatch= 50 to 70 µm  [161 ] 

1000 to 1900 

mm/s 

170 to 195 

w 

20 µm Rene 80 

non-

weldable 

Hatch= 30 to 80 µm  [162 ] 

2800 to 3200 

mm/s 

170 to 220 

w 

20 µm 247 LC non-

weldable 

Hatch= 20 to 40 µm  [163 ] 

200 to 2200 

mm/s 

125 to 350 

w 

30 µm IN718, 

weldable 

Hatch= 60 and 120 

µm 

 [164 ] 

800 mm/s 195 w 20 µm IN625, 

weldable 

Hatch= 100 µm, 

changing in Scan 

strategy 

 [165 ] 

500 to 1000 

mm/s 

170w 30 µm IN718 30% overlap 

between passes, 

 [62] 
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Hatch= 56 µm, 

laser spot= 80 µm 

800 to 1400 

mm/s 

200 w 30 µm ,418K 

medium 

weldability 

Hatch= 70 µm 

Al+Ti=4.3% 

 [166 ] 

 400-2000 

mm/s 
100-200 w 20 µm CM247 LC 

non-

weldable, 

directional 

solidified 

Laser spot: 150µm  [109 ] 

 

500-1500 

mm/s 

150-350w 30-62 µm IN718 

weldable 

(Optimized) 

P=245-255w 

V= 850-1000 mm/s 

Hatch: 100-110 µm 

Layer thickness: 43-

48 µm 

Beam diameter: 100 

µm 

 [12] 

150 to 250 

mm/s 

400 to 600 

w 

1.4 mm 

 
CMSX-4 

non-

weldable 

Selective laser 

epitaxy (SLE), 
Layer thickness and 

hatch: 1 to 2 mm 

 [167 ] 

 

6. A Commentary on Additive Manufacturing of Gamma-Prime Inducing NBSAs 

As mentioned earlier, the superalloys with a sum of aluminum and titanium greater than 6.4% are 

sorted as non-weldable alloys. Two conventional grades of this non-weldable group are IN738 and 

CMSX-4. Defectless joining in these alloys without using preheat is so difficult practically. In 

these alloys, strain-age cracks are created in the specimen due to the formation of the gamma-

prime phase. In order to solve the problem, preheat facilities have been designed for some new 

additive manufacturing machines. For the proper joining of superalloys like IN738, the preheat 
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temperature is usually set between 650°C to 800°C; applying this temperature makes the process 

hard in structure. Despite complex manufacturing, some advantages include small gamma primes 

and more homogenous distribution in the AM-developed parts. 

Conversely, the manufacturability of components with intricate internal cooling channels, such as 

new turbine blades, has catalyzed research efforts toward the exploration of additive 

manufacturing techniques for these particular alloys. Moreover, in single crystal grades, including 

CMSX-4, AM-developed parts are prone to form columnar structure, and it is possible to 

customize the structure to a large extent. Therefore, much research has been carried out regarding 

the effect of the process parameters on the type of solidifying structure and columnarization of the 

grains [111, 168-179]. 

7. Microscopy 

Two important items in the non-weldable superalloys are the size and distribution of the gamma 

prime particles. As mentioned, the present gamma primes in the AM-developed parts are smaller 

than those in the cast parts. In order to receive an acceptable image of the existing gamma primes 

in the parts, it is necessary to use a proper etchant solution to prepare them. 

• Marble's solution is proper because it preferentially attacks the gamma prime phase and 

leaves the residual gamma-matrix unaffected. The composition of Marble's solution is as 

follows [180]: 

50 ml HCl, 50 ml H2O, and 10 mg CuSO4 

• Another conventional reagent has the following composition [181]: 

10 ml HNO3, 50 ml HCl, and 60 ml glycerol 
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• For a proper electrical etch, the following composition may be used. It is noteworthy that 

the process is carried out in 6 V for about 5 s [182-186]. 

12 ml H3PO4 + 40 ml HNO3 + 48 ml H2SO4 

8. Applicable Mechanical Tests  

In general, numerous mechanical tests may be used to evaluate the mechanical properties of one 

specimen made of NBSAs. Different types of tests are employed to determine the working 

conditions of the sample. For instance, NBSAs often has elevated/high-temperature applications; 

therefore, the creep test is highly important. Fatigue [187], room and high-temperature tensile 

strength [147, 188-194], punch and tensile creep [195-203], relaxation, hardness, and micro-

hardness [147, 204, 205] tests may be specimen evaluation metrics. Some tests are used to predict 

the material properties in another test. For example, if the creep test is not practically possible, the 

relaxation test can be employed to have a total assumption of the material properties [115]. 

9. Improvement of AM-Developed Part Properties by HIP Treatment 

If the LPBF- and DLD-developed parts are subjected to heat treatment or HIP, the final properties 

will be comparable to the parts produced via conventional methods. Primarily for AM-developed 

parts, the same conventional heat treatment is applied to casting parts. However, it is evident that 

the traditional heat treatment process is an objective initiation point and needs to be improved and 

adapted for AM-developed parts [35, 206]. Therefore, much research is needed in this regard. 

By employing HIP, nearly all cracks are removed from susceptible alloys, such as IN738, and the 

porosities become small. By this method, only the internal cracks (the cracks connected to the 

surface remain) are eliminated. Machining can be employed to eliminate near-surface cracks with 
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interconnections; however, this approach may be infeasible in instances where the sample's 

geometry precludes such intervention [109, 141]. 

10. Advantages of Segregation Reduction and Homogeneity Enhancement in AM 

Another advantage of AM-developed parts is their improved chemical homogeneity, which is 

attributed to the small melt pool size in AM processes. Due to rapid solidification and limited melt 

volume, alloying elements have insufficient time to segregate during solidification. In contrast, 

cast specimens typically exhibit greater elemental segregation. In casting, alloying elements are 

pushed toward the remaining melt as solidification progresses, resulting in significant composition 

gradients between the initial and final solidified regions [34, 141, 207]. Rickenbacher et al. [141] 

illustrated this behavior by plotting the composition variation range in cast specimens and 

demonstrated that it is significantly higher than in AM-developed counterparts. 

11. New Materials  

Nowadays, due to the previously mentioned challenges in processing γ'-inducing NBSAs, studies 

have been conducted on modified materials. NBSAs were conventionally produced by casting; 

therefore, their chemical compositions were tailored to achieve the required properties after 

casting. In recent years, the same cast alloys have been used in AM processes. Some materials, 

such as IN738, retain their strength and performance at high temperatures and in extreme 

environments due to the presence of the γ' phase [208]. However, as discussed earlier in Section 

III.2, their inherent properties lead to poor weldability and, consequently, poor AM processability. 

Recent studies have shown that crack-free LBAM of these traditionally non-weldable alloys is 

possible, provided that process parameters are carefully selected [209]. These parameters often 

require re-optimization for each new experimental condition, such as variations in geometry, 
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powder composition, or particle size [210]. However, in industrial applications with complex 

geometries, achieving crack-free production remains a significant challenge. To address these 

issues, efforts have been made to reduce the content of γ'-forming elements such as Al and Ti. In 

addition, some studies have aimed to modify the chemical composition to narrow the solidification 

range, thereby minimizing the risk of solidification cracking. ABD-900AM is one such newly 

designed superalloy. After proper heat treatment, it forms approximately 35% γ' by volume. In 

these alloys, the reduced γ' strengthening is compensated by the addition of solid-solution 

strengthening elements such as W and Mo, which strengthen the γ phase. The resulting mechanical 

properties at high temperatures are comparable to those of IN738 and IN739, which are commonly 

used in turbine blades and hot-section nozzles of gas turbines [26, 211-216]. 
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IV. Conclusion 

The review begins by addressing the progress and development of LBAM (DLD and LPBF), 

providing a foundation for understanding the evolving capabilities and limitations of these 

methods in industry. By exploring the development trajectory of LBAM, we gain deeper insight 

into how LPBF and DLD can be optimized and applied across various applications. The second 

half of the review focuses on a case study of nickel alloys, emphasizing how the knowledge of 

LBAM's evolution helps to better understand the potential and challenges of these techniques in 

the context of specific materials. 

The findings of this review indicate that, LPBF and DLD are transforming the manufacturing 

landscape for NBSAs, offering significant advantages for the fabrication and repair of complex 

components. Traditional methods like casting and wrought processing are constrained by 

geometric limitations, long lead times, and difficulties in defect control. In contrast, LPBF and 

DLD can produce net-shape parts with intricate geometries, reducing material waste and offering 

localized heat input for improved microstructures. This review has highlighted key aspects of the 

processes, including powder characteristics, laser-material interaction, thermal cycling, and 

microstructural evolution, with a particular focus on how processing parameters influence final 

part quality. 

The processability of various NBSAs in AM has been a central theme, with weldable alloys like 

IN625 being more amenable to LPBF and DLD, while more challenging alloys such as IN718 and 

non-weldable NBSAs like IN738 and CMSX-4 require tailored strategies to overcome processing 

difficulties. Moreover, the review underscores the need for developing AM-specific post-

processing treatments, as traditional methods do not effectively address the unique microstructures 

of AM-produced components. 
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Emerging trends such as in-situ monitoring, machine learning-based optimization, and the 

development of crack-resistant alloys are essential for advancing AM's reliability and repeatability. 

As research progresses, AM will continue to enable the production and repair of advanced NBSA 

components with customized performance, offering promising implications for sectors such as 

aerospace and power generation. The continued exploration of processing strategies, alloy design, 

and microstructure-property relationships will be crucial to fully realizing the potential of LPBF 

and DLD in industrial applications. 
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Glossary 

AM: Additive Manufacturing 

LBAM: Laser-Based Additive Manufacturing 

LPBF: Laser Powder Bed Fusion 

NBSAs: Nickel-Based Superalloys 

HAZ: Heat-Affected Zone 

SLM: Selective Laser Melting 

DLD: Direct Laser Deposition 

DED: Directed Energy Deposition 

EBPBF: Electron Beam Powder Bed Fusion 

HIP: Hot Isostatic Pressing 
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